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Goals & prerequisites

* Goal: Learn about characteristics of a huge system.

* Prerequisites:
— Basic understand of hardware architecture.
— Basic understanding of C and Linux.
— Basic understanding of Oracle running on Linux.
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SGI UV300

CPUs: Intel(R) Xeon(R) CPU E7-8890 v2 @ 2.80GHz
— (lvy Bridge EX)

32 sockets

480 cores (15 cores/socket)

960 threads (intel hyper threading)

325480c960t
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Memory

* Total memory size: 24TB
* Memory is local to a socket

e (24*1024)/32 =768 GB / socket

# numactl --hardware | grep size
node 0 size: 753624 MB

node 31 size: 753648 MB
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Memory

* Memory is DDR3 @ 1333Mhz

# dmidecode | grep -Al3 'Memory Device'
Memory Device

Array Handle: 0x0001

Error Information Handle: Not Provided

Total Width: 72 bits

Data Width: 64 bits

Size: 32 GB

Form Factor: DIMM

Set: 8

Locator: DIMMDZ

Bank Locator: MEMS

Type: DDR3

Type Detail: Synchronous

Speed: 1333 MHz

Manufacturer: Samsung
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History: UMA

* Uniform Memory Access

* SMP in the 90s.
* Intel bus architecture: FSB.
* Pentium Pro & Pentium I
* Northbridge (memory controller hub)
* Southbridge (I/O controller hub)
* Architecture provided limited scalability.
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NUMA

Non Uniform Memory Access

Memory local to Socket.

* Allowing much more memory in a server.
Each socket can also have its own IO channel.

* Allowing higher 10 rates.

Sockets interconnected using QPI.

* For Intel based system starting from Nehalem.
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NUMA - scaling up beyond 4 s.
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NUMA - 5GI UV 300

So how can the UV300 have 32 sockets?

The sockets are grouped by 4.
And include two “HARPs”: CPU interconnects.

HARPs use SGIs Numalink?7 interconnect.
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NUMA - 5GI UV 300

* The HARPs are connected to every other HARP.
* This means a socket is local, 1 or 2 hops away.

UV 300

enkitec



Performance

e Use ‘numactl --hardware' to learn the ‘distance’

# numactl --hardware
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Systems performance

How does such a system behave?

Test memory read performance with SLB!

http://kevinclosson.net/2010/11/17/
reintroducing-slb-the-silly-little-benchmark/

Reads anonymous memory into CPU register
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http://kevinclosson.net/2010/11/17/reintroducing-slb-the-silly-little-benchmark/

Svstems performance

* What SLB does (snippets of memhammer.c)

#define A RZNDOM LINE ((mybuffer *) (base addr + pick buff()))->buffer| (ops %
LINES PER BUFFER) * INTS PER LINE ]

volatile register char tmp;

memset ((void *) base addr, (int) 0, ((sizeof (mybuffer)) * num buffers));

r buffer = base addr; 1 < num buffers; 1++, cur buffer++) {

INTS PER BUFFER; Jj++) {

er[j] = (int) 1i;

for (ops=0LL ; ops < 3000000000LL; ops+=1LL) {
tmp = (char) A INE;

17

enkitec



Systems performance

Why describe this detailed?

This has nothing to do with Oracle!
Pure flow from main memory to CPU, 8 bits.

Reveals memory latency very well!
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Systems performance

* |s this a problem/flaw?

* No: fact of life.

* Further away resources means increase in
latency.
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Systems performance

* By increasing the number of sockets/nodes
* Latency increases.
* There’s only two nodes at distance 16.

* Let’s look at accessing memory via the HARP!
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SLB - Multiple node memory
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Systems performance

* Conclusions so far:
* Accessing remote memory increases latency.
* Further away memory gives higher latency.

* Accessing multiple sockets’ memory increases
latency to:

* Local sockets: 0.81%/socket (1.62/2)
e VVia HARP: between 0.50-0.87%/socket.
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Oracle performance

Now let’s measure running the Oracle database!

http://kevinclosson.net/slob

Test single block access in memory.
Also known as ‘LIO benchmark’.
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http://kevinclosson.net/slb
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SLOB - 1 reader throughput

* This looks different than the memory benchmark

* Let’s overlay the SLOB results with the SLB
results.
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SLOB - 1 reader throughput
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SLOB - 1 reader throughput

* The Oracle throughput does NOT decline as fast
as the SLB one.

* (this specific) Oracle load is not only accessing
memory.

* This probably means:
* It is doing processing using L1/2/3 caches!
* Probably a result of many years of tuning.
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SLOB - Local NUMA nodes

* Previous measurements are done to measure
memory latencies.

* These do not show real life usage.

* The next slide is an overview of running on one
to four NUMA nodes.
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SLOB - 1to 4 nodes / 1 reader
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SLOB - Local NUMA nodes

* Conclusion for Oracle for up to 4 sockets:
* Latency increases moderately.
* Way less than pure memory access.
* For two node servers, don’t enable NUMA.
* For up to four nodes.
* Milage varies. Probably not worth the effort.
* Test your own load.
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SLOB - Multiple node with HARP
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Oracle/SLOB performance

e Conclusions so far:

* Accessing multiple sockets’ memory increases
latency to:

* Local sockets: 2.09%/socket (4.17/2)
* Via HARP: between 0.18-1.70%/socket.
* Reason for the difference Oracle <> SLB:
* Probably L1/2/3 cache influence.
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Oracle performance

* Now let’s focus on bandwidth with LIO:

e Start independent sessions without affinity.
* Using SLOB.

* Every reader reads its own schema.
* |ndex range scans.

* Run SLOB until PIO vanishes from AWR.
e Then measure SLOB run.
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SLOB readers throughput
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Scan a big table with PQ

* Created a set of tables with the TPCH kit.
 Table H LINEITEM is the biggest one.
* Size: 739G / 96’864°152 blocks.
* 5'999°989°709 rows. 6 billion rows!

 Created with SCALE=1000
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Scan a big table with PQ

Set my buffercache to be 10T.
Scanned table with in memory PQ option
* alter session set parallel degree policy=auto;

Normal scanning only read 1/3rd in the buffer
cache.

Set my KEEP pool to 1T.

Altered the table H LINEITEM to the KEEP pool
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Scan a big table with PQ

* Near linear scaling up to core count.
* All slaves busy, no producer/consumer model.

e Let’s see what the in-memory option can do!

* Added 1T in-memory pool.
* Copied table for in-memory (query high).
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Scan a big table with PQ

* Unbelievable performance with in-memory
option.

* No such thing as magic.
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Scan a big table with PQ

* In-memory:
* Suspicion of HCC count(*) optimization.

* To mitigate potential pre-computed result:
* Try different function: avg()
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Scan a big table with PQ

* in-memory option reduces 66% of time(!!)
* No vector (SIMD) processing tested.
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Conclusion

* |Increase in NUMA nodes increases random
memory access latency.

* However, core count increases processing
capacity too.

* Memory placement is important with NUMA
count >4 - 8.
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Conclusion

* UV 300 has constant distance via HARP.
* This means adding NUMA nodes scales linearly.

* Oracle OLTP processing takes very efficient usage of
on-die caches (L1/2/3).

* Disable NUMA on low socket count (>=4) servers
for Oracle, unless you can prove it benefits.
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Conclusion

* PQ can be turned to cached reads by:
» Setting the NOCACHE attribute to CACHE*.
* Moving a table in the KEEP pool.

* With no cache fixation, Oracle might restrict
blocks in cache to 1/3rd of the total.

* The in-memory parallel query option scans
almost all blocks into cache.
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Conclusion

* UV 300 processing works well together with PQ.

* [n-memory compression has pre-computed
count(*) optimization.

* There is overhead involved in PQ processing.
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Oracle Findings

* The SGA huge pages are initialised by a single
process.

* |nitialising a 10T SGA takes a significant time.
 Shutdown normal/immediate never finishes.
* PMON failed to acquire latch error.

* Process shutting down the instance
continuously running through /proc/stat.

enkitec



Oracle Findings

* Heavy parallel scan on 750G table in memory.
* Took ~ 5 seconds right after startup.

* Took ~ 20 seconds after 14 days uptime.

e 5 seconds was restored after bounce.
e Uncertain what the cause is...
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Q&A
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