

Running Oracle on a 32 socket server with 24T of memory

Frits Hoogland

`whoami`

- Frits Hoogland
- Working with Oracle products since 1996

- Blog: http://fritshoogland.wordpress.com
- Twitter: @fritshoogland
- Email: frits.hoogland@accenture.com
- Oracle ACE Director

OakTable Member

Goals & prerequisites

Goal: Learn about characteristics of a huge system.

- Prerequisites:
 - Basic understand of hardware architecture.
 - Basic understanding of C and Linux.
 - Basic understanding of Oracle running on Linux.

SGI UV300

- CPUs: Intel(R) Xeon(R) CPU E7-8890 v2 @ 2.80GHz
 (Ivy Bridge EX)
- 32 sockets
- 480 cores (15 cores/socket)
- 960 threads (intel hyper threading)

• 32s480c960t

Memory

- Total memory size: 24TB
- Memory is local to a socket

• (24*1024)/32 = 768 GB / socket

```
# numactl --hardware | grep size
node 0 size: 753624 MB
...
node 31 size: 753648 MB
```


Memory

Memory is DDR3 @ 1333Mhz

```
# dmidecode | grep -A13 'Memory Device'
Memory Device
   Array Handle: 0x0001
   Error Information Handle: Not Provided
   Total Width: 72 bits
   Data Width: 64 bits
   Size: 32 GB
   Form Factor: DIMM
   Set: 8
   Locator: DIMMD2
   Bank Locator: MEM8
   Type: DDR3
   Type Detail: Synchronous
   Speed: 1333 MHz
   Manufacturer: Samsung
```


History: UMA

Uniform Memory Access

- SMP in the 90s.
- Intel bus architecture: FSB.
 - Pentium Pro & Pentium II
 - Northbridge (memory controller hub)
 - Southbridge (I/O controller hub)
 - Architecture provided limited scalability.

History: UMA

NUMA

Non Uniform Memory Access

- Memory local to Socket.
 - Allowing much more memory in a server.
- Each socket can also have its own IO channel.
 - Allowing higher IO rates.
- Sockets interconnected using QPI.
 - For Intel based system starting from Nehalem.

NUMA

NUMA - scaling up beyond 4 s.

NUMA - SGI UV 300

So how can the UV300 have 32 sockets?

- The sockets are grouped by 4.
- And include two "HARPs": CPU interconnects.
- HARPs use SGIs NumaLink7 interconnect.

NUMA - SGI UV 300

CPU and HARP Connections within the UV 300 Chassis

NUMA - SGI UV 300

- The HARPs are connected to every other HARP.
- This means a socket is local, 1 or 2 hops away.

Performance

Use 'numactl --hardware' to learn the 'distance'

```
numactl --hardware
 Next socket
                       Local sockets
node
             16
                50
                                     50
                50
          16
                      50
                                     50
                50
                50
          16
                      50
                          Same distance for numalink
    50
          50
                      16
                                  remote sockets.
```

1 hop

How does such a system behave?

- Test memory read performance with SLB!
- http://kevinclosson.net/2010/11/17/
 reintroducing-slb-the-silly-little-benchmark/

Reads anonymous memory into CPU register

make read go into cpu register

What SLB does (snippets of memhammer.c)

read data from main memory

Why describe this detailed?

- This has nothing to do with Oracle!
- Pure flow from main memory to CPU, 8 bits.

Reveals memory latency very well!

Is this a problem/flaw?

- No: fact of life.
 - Further away resources means increase in latency.

- By increasing the number of sockets/nodes
 - Latency increases.
 - There's only two nodes at distance 16.

Let's look at accessing memory via the HARP!

SLB - Multiple node memory

- Conclusions so far:
 - Accessing remote memory increases latency.
 - Further away memory gives higher latency.
 - Accessing multiple sockets' memory increases latency to:
 - Local sockets: 0.81%/socket (1.62/2)
 - Via HARP: between 0.50-0.87%/socket.

Oracle performance

Now let's measure running the Oracle database!

http://kevinclosson.net/slob

- Test single block access in memory.
- Also known as 'LIO benchmark'.

This looks different than the memory benchmark

Let's overlay the SLOB results with the SLB results.

- The Oracle throughput does NOT decline as fast as the SLB one.
 - (this specific) Oracle load is not only accessing memory.
 - This probably means:
 - It is doing processing using L1/2/3 caches!
 - Probably a result of many years of tuning.

SLOB - Multiple node many 16.75-12.58= 4.17% decrease n0-m0 375.207 n0-ml 328.012 n0-m1,3 312.372 380.000 285.000 95.000 190.000

SLOB - Local NUMA nodes

 Previous measurements are done to measure memory latencies.

These <u>do not</u> show real life usage.

 The next slide is an overview of running on one to four NUMA nodes.

SLOB - 1 to 4 nodes / 1 reader

SLOB - Local NUMA nodes

- Conclusion for Oracle for up to 4 sockets:
 - Latency increases moderately.
 - Way less than pure memory access.
 - For two node servers, don't enable NUMA.
 - For up to four nodes.
 - Milage varies. Probably not worth the effort.
 - Test your own load.

SLOB - Multiple node with HARP

Oracle/SLOB performance

- Conclusions so far:
 - Accessing multiple sockets' memory increases latency to:
 - Local sockets: 2.09%/socket (4.17/2)
 - Via HARP: between 0.18-1.70%/socket.
 - Reason for the difference Oracle <> SLB:
 - Probably L1/2/3 cache influence.

Oracle performance

- Now let's focus on bandwidth with LIO:
 - Start independent sessions without affinity.
 - Using SLOB.
 - Every reader reads its own schema.
 - Index range scans.

- Run SLOB until PIO vanishes from AWR.
- Then measure SLOB run.

SLOB readers throughput

- Created a set of tables with the TPCH kit.
 - Table H_LINEITEM is the biggest one.
 - Size: 739G / 96'864'152 blocks.
 - 5'999'989'709 rows. 6 billion rows!

Created with SCALE=1000

- Set my buffercache to be 10T.
- Scanned table with in memory PQ option
 - alter session set parallel_degree_policy=auto;

 Normal scanning only read 1/3rd in the buffer cache.

- Set my KEEP pool to 1T.
- Altered the table H_LINEITEM to the KEEP pool

count(*) KEEP cache

- Near linear scaling up to core count.
 - All slaves busy, no producer/consumer model.

- Let's see what the in-memory option can do!
 - Added 1T in-memory pool.
 - Copied table for in-memory (query high).

- count(*) KEEP cachecount(*) in-memory

Unbelievable performance with in-memory option.

No such thing as magic.

- in-memory:
 - Suspicion of HCC count(*) optimization.

- To mitigate potential pre-computed result:
 - Try different function: avg()

- count(*) KEEP cache
- avg(l_orderkey) KEEP cache

- count(*) in-memory
- avg(l_orderkey) in-memory

- avg(I_orderkey) KEEP cache
- avg(l_orderkey) in-memory

- in-memory option reduces 66% of time(!!)
- No vector (SIMD) processing tested.

- Increase in NUMA nodes increases random memory access latency.
- However, core count increases processing capacity too.

 Memory placement is important with NUMA count > 4 - 8.

- UV 300 has constant distance via HARP.
 - This means adding NUMA nodes scales linearly.

• Oracle OLTP processing takes very efficient usage of on-die caches (L1/2/3).

 Disable NUMA on low socket count (>=4) servers for Oracle, unless you can prove it benefits.

- PQ can be turned to cached reads by:
 - Setting the NOCACHE attribute to CACHE*.
 - Moving a table in the KEEP pool.
- With no cache fixation, Oracle might restrict blocks in cache to 1/3rd of the total.

 The in-memory parallel query option scans almost all blocks into cache.

UV 300 processing works well together with PQ.

 In-memory compression has pre-computed count(*) optimization.

There is overhead involved in PQ processing.

Oracle Findings

- The SGA huge pages are initialised by a single process.
 - Initialising a 10T SGA takes a significant time.
- Shutdown normal/immediate never finishes.
 - PMON failed to acquire latch error.
 - Process shutting down the instance continuously running through /proc/stat.

Oracle Findings

- Heavy parallel scan on 750G table in memory.
 - Took ~ 5 seconds right after startup.
 - Took ~ 20 seconds after 14 days uptime.
 - 5 seconds was restored after bounce.
 - Uncertain what the cause is...

Q & A

