enkitec

Running Oracle on a 32 socket
server with 24T of memory

"whoami

Frits Hoogland

Working with Oracle products since 1996

Blog: http://fritshoogland.wordpress.com
Twitter: @fritshoogland

Email: frits.hoogland@accenture.com
Oracle ACE Director °JE
OakTable Member ‘ai‘lab‘-e“ﬁ

enkitec

Goals & prerequisites

* Goal: Learn about characteristics of a huge system.

* Prerequisites:
— Basic understand of hardware architecture.
— Basic understanding of C and Linux.
— Basic understanding of Oracle running on Linux.

enkitec

SGI UV300

CPUs: Intel(R) Xeon(R) CPU E7-8890 v2 @ 2.80GHz
— (lvy Bridge EX)

32 sockets

480 cores (15 cores/socket)

960 threads (intel hyper threading)

325480c960t

enkitec

Memory

* Total memory size: 24TB
* Memory is local to a socket

e (24*1024)/32 =768 GB / socket

numactl --hardware | grep size
node 0 size: 753624 MB

node 31 size: 753648 MB

enkitec

Memory

* Memory is DDR3 @ 1333Mhz

dmidecode | grep -Al3 'Memory Device'
Memory Device

Array Handle: 0x0001

Error Information Handle: Not Provided

Total Width: 72 bits

Data Width: 64 bits

Size: 32 GB

Form Factor: DIMM

Set: 8

Locator: DIMMDZ

Bank Locator: MEMS

Type: DDR3

Type Detail: Synchronous

Speed: 1333 MHz

Manufacturer: Samsung

enkitec

History: UMA

* Uniform Memory Access

* SMP in the 90s.
* Intel bus architecture: FSB.
* Pentium Pro & Pentium I
* Northbridge (memory controller hub)
* Southbridge (I/O controller hub)
* Architecture provided limited scalability.

enkitec

History: UMA

processor processor processor processor

Up to 12.8GB/s
Platform Bandwidth

- = Shogpfiter _ _ _
4
.
Memory g)
Interface 8 chipset
.
>

NUMA

Non Uniform Memory Access

Memory local to Socket.

* Allowing much more memory in a server.
Each socket can also have its own IO channel.

* Allowing higher 10 rates.

Sockets interconnected using QPI.

* For Intel based system starting from Nehalem.

enkitec

NUMA
24 4

chipset
-+

f 4

- e
Memory — ¢ Processor <ffe—— DrOCESSOr . Interface

=5 LSt

- P
Memo ¢ . Memory
ory o PrOCESSON —- DrOCESSOT Interface
Interface ’ h <—>

N

chipset
Legend:
-#—P Bi-directional bus
ecessee -t Uni-drectional link
o

NUMA - scaling up beyond 4 s.

I—IEE

4|5
| 6 —1 7

L

enkitec

NUMA - 5GI UV 300

So how can the UV300 have 32 sockets?

The sockets are grouped by 4.
And include two “HARPs”: CPU interconnects.

HARPs use SGIs Numalink?7 interconnect.

enkitec

NL7
Channels

NL7
Channels

NUMA - 5GI UV 300

CPU and HARP Connections
within the UV 300 Chassis

‘ CPUO !' aer {v{ cPU1 |

< >
- » NL7
< Channels
-«
NL7
I T B < I N Channels

\AAJ

13

NUMA - 5GI UV 300

* The HARPs are connected to every other HARP.
* This means a socket is local, 1 or 2 hops away.

UV 300

enkitec

Performance

e Use ‘numactl --hardware' to learn the ‘distance’

numactl --hardware

enkitec i

Systems performance

How does such a system behave?

Test memory read performance with SLB!

http://kevinclosson.net/2010/11/17/
reintroducing-slb-the-silly-little-benchmark/

Reads anonymous memory into CPU register

enkitec

http://kevinclosson.net/2010/11/17/reintroducing-slb-the-silly-little-benchmark/

Svstems performance

* What SLB does (snippets of memhammer.c)

#define A RZNDOM LINE ((mybuffer *) (base addr + pick buff()))->buffer| (ops %
LINES PER BUFFER) * INTS PER LINE]

volatile register char tmp;

memset ((void *) base addr, (int) 0, ((sizeof (mybuffer)) * num buffers));

r buffer = base addr; 1 < num buffers; 1++, cur buffer++) {

INTS PER BUFFER; Jj++) {

er[j] = (int) 1i;

for (ops=0LL ; ops < 3000000000LL; ops+=1LL) {
tmp = (char) A INE;

17

enkitec

Systems performance

Why describe this detailed?

This has nothing to do with Oracle!
Pure flow from main memory to CPU, 8 bits.

Reveals memory latency very well!

enkitec

n0-mO
nO-m|
n0-m2
n0-m4

SLB - 1 reader throughput

1.451.025.250
830.192.338
.579.498
392.693.136
° A 2 S -
S S = S
2 2 S S
S S S S
2 2 S s
S S S S
o o

enkitec

Systems performance

* |s this a problem/flaw?

* No: fact of life.

* Further away resources means increase in
latency.

enkitec

SLB -

n0-mO
n0-m|

n0-m1l,3

830.192.338

806.587.742

1.451.025.250

000°000°9LE

S

000°0000SL

KRitec

000°000°9¢CI |

000°00000S'|

21

Systems performance

* By increasing the number of sockets/nodes
* Latency increases.
* There’s only two nodes at distance 16.

* Let’s look at accessing memory via the HARP!

enkitec

SLB - Multiple node memory

n0-mO
n0-m4
n0-m4,5 T assoe
N0-m4-6 N 561053 28
NO-m4-7 [sz
NO-m4-15 [250753
N0-m4-3 | [005271

1.451.025.250

392.693.136

< S S v —
S S > S

S S & &

S S S S

S S & &

S S S S

o o

—

enkitec

Systems performance

* Conclusions so far:
* Accessing remote memory increases latency.
* Further away memory gives higher latency.

* Accessing multiple sockets’ memory increases
latency to:

* Local sockets: 0.81%/socket (1.62/2)
e VVia HARP: between 0.50-0.87%/socket.

enkitec

Oracle performance

Now let’s measure running the Oracle database!

http://kevinclosson.net/slob

Test single block access in memory.
Also known as ‘LIO benchmark’.

enkitec

http://kevinclosson.net/slb

n0-mO
nO-m|
n0-m2
n0-m4

SLOB - 1 reader throughput

000

000

328.012

375.207

00008¢

SLOB - 1 reader throughput

* This looks different than the memory benchmark

* Let’s overlay the SLOB results with the SLB
results.

enkitec

SLOB - 1 reader throughput

O —_ ND W
Ul O (00 (00
o S G S
- - - -
o - o o
o o o

SLOB

SLOB - 1 reader throughput

* The Oracle throughput does NOT decline as fast
as the SLB one.

* (this specific) Oracle load is not only accessing
memory.

* This probably means:
* It is doing processing using L1/2/3 caches!
* Probably a result of many years of tuning.

enkitec

SLOB -

n0-mO

n0-m|

n0-m1l,3

312.372

328.012

O — N
U1 O (00
b o .U'I
o o o
o o o
o o

e

enkitec

000 08¢

30

SLOB - Local NUMA nodes

* Previous measurements are done to measure
memory latencies.

* These do not show real life usage.

* The next slide is an overview of running on one
to four NUMA nodes.

enkitec

SLOB - 1to 4 nodes / 1 reader

NOde O 369.702
Node O- I 357.801
_ﬁ
Node 0-2 310.591
_a
Node 0-3 310.747
o © _ ¢ w
N (00 ~ N
Ul v ~N O
o o o o
o o o o
o o o
SLOB

SLOB - Local NUMA nodes

* Conclusion for Oracle for up to 4 sockets:
* Latency increases moderately.
* Way less than pure memory access.
* For two node servers, don’t enable NUMA.
* For up to four nodes.
* Milage varies. Probably not worth the effort.
* Test your own load.

enkitec

SLOB - Multiple node with HARP

n0-mO
nO-m4 199.441
no-m4’5 08.Ubo
n0-m4-6 A
n0-m4-7
n0-m4-15 =~ wmsn
n0-m4-3| P 113,70
o — N w TN
o o o o
S S S S
o o o o
S oS S S
S S S S

enkitec

Oracle/SLOB performance

e Conclusions so far:

* Accessing multiple sockets’ memory increases
latency to:

* Local sockets: 2.09%/socket (4.17/2)
* Via HARP: between 0.18-1.70%/socket.
* Reason for the difference Oracle <> SLB:
* Probably L1/2/3 cache influence.

enkitec

Oracle performance

* Now let’s focus on bandwidth with LIO:

e Start independent sessions without affinity.
* Using SLOB.

* Every reader reads its own schema.
* |ndex range scans.

* Run SLOB until PIO vanishes from AWR.
e Then measure SLOB run.

enkitec

SLOB readers throughput

60.000.000
45.000.000
D
S 30.000.000 /B><§
—1
15.000.000
0
NUMA nodes — 1 2 3 4 5 8 16 32
15¢ 30c 45¢ o0cC /5c 120c 240c 480c
30t o0t 90t 120t 150t 240t 480t 9060t
readers — 1 60 120 180 © 240

O 300 o000 /80
enkitec

Scan a big table with PQ

* Created a set of tables with the TPCH kit.
 Table H LINEITEM is the biggest one.
* Size: 739G / 96’864°152 blocks.
* 5'999°989°709 rows. 6 billion rows!

 Created with SCALE=1000

enkitec

Scan a big table with PQ

Set my buffercache to be 10T.
Scanned table with in memory PQ option
* alter session set parallel degree policy=auto;

Normal scanning only read 1/3rd in the buffer
cache.

Set my KEEP pool to 1T.

Altered the table H LINEITEM to the KEEP pool
enkitec

Seconds

60

45

30

15

Scan a big table with PQ

51

20

14

30

60

120 240 480

Parallel degree

count(*) KEEP cache
enkitec

960

Scan a big table with PQ

* Near linear scaling up to core count.
* All slaves busy, no producer/consumer model.

e Let’s see what the in-memory option can do!

* Added 1T in-memory pool.
* Copied table for in-memory (query high).

enkitec

Seconds

Scan a big table with PQ

51

45
14

15 7 5 5

324 181 1,09700:84—51,35 266
0
30 o0 120 240 480 960

Parallel degree

count(™) KEEP cache count(*™) in-memory

enkitec

Scan a big table with PQ

* Unbelievable performance with in-memory
option.

* No such thing as magic.

enkitec

Scan a big table with PQ

* In-memory:
* Suspicion of HCC count(*) optimization.

* To mitigate potential pre-computed result:
* Try different function: avg()

enkitec

Seconds

Sgan a big table with PQ

/0
52,5
51 36
35
A 18
17.5
| 9 6 6
14
O 4 — _
30 o0 120 220 480 980

Parallel degree

count(*) KEEP cache
avg(l_orderkey) KEEP cache

enkitec

Seconds

Scan a big table with PQ

22.5
6
/.5
3 1 0,99 0,373 2 2
0
30 o0 120 240 480 960

Parallel degree

count(*™) in-memory
avg(l_orderkey) in-memory

enkitec

Seconds

Sgan a big table with PQ

70
52.5
30
3528
18
13
17,5 ®)
0 3 5 5
0
30 60 120 240 480 960

Parallel degree

avg(l_orderkey) KEEP cache
avg(l_orderkey) in-memory

enkitec

Scan a big table with PQ

* in-memory option reduces 66% of time(!!)
* No vector (SIMD) processing tested.

enkitec

Conclusion

* |Increase in NUMA nodes increases random
memory access latency.

* However, core count increases processing
capacity too.

* Memory placement is important with NUMA
count >4 - 8.

enkitec

Conclusion

* UV 300 has constant distance via HARP.
* This means adding NUMA nodes scales linearly.

* Oracle OLTP processing takes very efficient usage of
on-die caches (L1/2/3).

* Disable NUMA on low socket count (>=4) servers
for Oracle, unless you can prove it benefits.

enkitec

Conclusion

* PQ can be turned to cached reads by:
» Setting the NOCACHE attribute to CACHE*.
* Moving a table in the KEEP pool.

* With no cache fixation, Oracle might restrict
blocks in cache to 1/3rd of the total.

* The in-memory parallel query option scans
almost all blocks into cache.

enkitec

Conclusion

* UV 300 processing works well together with PQ.

* [n-memory compression has pre-computed
count(*) optimization.

* There is overhead involved in PQ processing.

enkitec

Oracle Findings

* The SGA huge pages are initialised by a single
process.

* |nitialising a 10T SGA takes a significant time.
 Shutdown normal/immediate never finishes.
* PMON failed to acquire latch error.

* Process shutting down the instance
continuously running through /proc/stat.

enkitec

Oracle Findings

* Heavy parallel scan on 750G table in memory.
* Took ~ 5 seconds right after startup.

* Took ~ 20 seconds after 14 days uptime.

e 5 seconds was restored after bounce.
e Uncertain what the cause is...

enkitec

Q&A

enkitec

