
BASEL BERN BRUGG DÜSSELDORF FRANKFURT A.M. FREIBURG I.BR. GENEVA

HAMBURG COPENHAGEN LAUSANNE MUNICH STUTTGART VIENNA ZURICH

@ChrisAntognini antognini.ch/blog

Christian Antognini

Indexes: Structure, Splits and Free

Space Management Internals

@ChrisAntognini

Troubleshooting Oracle Performance2 29/05/2017

Senior principal consultant, trainer and partner at Trivadis

christian.antognini@trivadis.com

http://antognini.ch

Focus: get the most out of Oracle Database

Logical and physical database design

Query optimizer

Application performance management

Author of Troubleshooting Oracle Performance (Apress, 2008/14)

OakTable Network, Oracle ACE Director

Agenda

Indexes: Structure, Splits and Free Space Management Internals3 08/06/2017

1. Concepts

2. Index Keys

3. Splits

4. Free Space

5. Reorganizations

6. Bitmap

Indexes: Structure, Splits and Free Space Management Internals4 08/06/2017

Concepts

Structure of a B-Tree

08/06/2017 Indexes: Structure, Splits and Free Space Management Internals5

24 51

12 29 42 86

2 ROWID

8 ROWID

10 ROWID

11 ROWID

12 ROWID

18 ROWID

20 ROWID

24 ROWID

26 ROWID

29 ROWID

34 ROWID

38 ROWID

42 ROWID 51 ROWID

55 ROWID

73 ROWID

86 ROWID

99 ROWID

left<24
right≥24

le
a
f

b
lo

ck
s

b
ra

n
ch

b
lo

ck
s

root block

Nulls

Indexes: Structure, Splits and Free Space Management Internals6 08/06/2017

NULL values are stored in the index only when at least one of the indexed

columns is not NULL

Exception: bitmap indexes always store indexed data

For unique indexes the uniqueness is guaranteed only if at least one of the

indexed columns is not NULL

NULL values are stored after not NULL values in the index

Myths

Indexes: Structure, Splits and Free Space Management Internals7 08/06/2017

B-tree indexes can become “unbalanced” over time and need to be rebuilt

Deleted space is “deadwood” and over time requires the index to be rebuilt

If an index reaches “x” number of levels, it becomes inefficient and requires

the index to be rebuilt

If an index has a poor clustering factor, the index needs to be rebuilt

To improve performance, indexes need to be regularly rebuilt

Source: Oracle B-Tree Index Internals: Rebuilding The Truth, Richard Foote

Indexes: Structure, Splits and Free Space Management Internals8 08/06/2017

Index Keys

Internal Key

Indexes: Structure, Splits and Free Space Management Internals9 08/06/2017

Internally a unique key is needed to sort the indexed columns

For unique indexes the internal key is the same as the index key

For non-unique indexes the (extended or restricted) ROWID of the indexed

row is added to the index key to make it unique

Therefore:

The index entries are sorted in a consistent way

Even for non-unique indexed the order of the index entries changes only

when the indexed table is reorganized (i.e. not if the index is rebuilt!)

Branch Block Key

Indexes: Structure, Splits and Free Space Management Internals10 08/06/2017

In branch blocks the internal key is truncated after the first byte that differs

from the last key of the left leaf block

All keys are preceded by a length field

1 byte for data up to 127 bytes, otherwise 2 bytes

Partially stored keys are terminated by 0xFE

Nulls have a column length of 0xFF, trailing nulls are stored

RDBA
Len

Key 1

Data

Key 1

Len

Key X

Data

Key X

Leaf Block Key

Indexes: Structure, Splits and Free Space Management Internals11 08/06/2017

All keys are preceded by a length field

1 byte for data up to 127 bytes, otherwise 2 bytes

Nulls have a column length of 0xFF, trailing nulls are stored

For global indexes an extended ROWID is used, otherwise a restricted

ROWID is enough.

Flags Lock
Len

Key 1

Data

Key 1

Len

ROWID

ROWID

(optional)

Indexes: Structure, Splits and Free Space Management Internals12 08/06/2017

Splits

Splits

Indexes: Structure, Splits and Free Space Management Internals13 08/06/2017

50:50 split

The keys are evenly distributed over two blocks

Based on size, not number of keys

99:1 split (a.k.a. 90:10)

The new key is the right-most of the index

A new leaf block containing only the new key is added

A change in the structure of an index (like a split) is not rollbacked if the

transaction that caused it is rollbacked

Splits

Indexes: Structure, Splits and Free Space Management Internals14 08/06/2017

#1

Splits

Indexes: Structure, Splits and Free Space Management Internals15 08/06/2017

#1

#2 #3

Splits

Indexes: Structure, Splits and Free Space Management Internals16 08/06/2017

#3#2 #4

#1

Splits

Indexes: Structure, Splits and Free Space Management Internals17 08/06/2017

#1

#3#2 #4 #5

Splits

Indexes: Structure, Splits and Free Space Management Internals18 08/06/2017

Indexes: Structure, Splits and Free Space Management Internals19 08/06/2017

Free Space

Reminder

Indexes: Structure, Splits and Free Space Management Internals20 08/06/2017

PCTFREE is only used when the index is created (or rebuilt)

An update is implemented as a delete followed by an insert

The free space in leaf blocks is strongly dependent on the type of split

(50:50 or 99:1)

PCTUSED cannot be used for indexes

Free Space

Indexes: Structure, Splits and Free Space Management Internals21 08/06/2017

#1

#4#2 #3

Free Space

Indexes: Structure, Splits and Free Space Management Internals22 08/06/2017

#1

#3#2 #4

Indexes: Structure, Splits and Free Space Management Internals23 08/06/2017

Reorganizations

Reorganizations

Indexes: Structure, Splits and Free Space Management Internals24 08/06/2017

If the free space is not automatically reused, it should be manually reclaimed

This is unusual, therefore such an operation should only be performed if it

is really necessary

To manually reclaim free space two possibilities exists

Rebuild: the index is recreated

Coalesce: free space in contiguous blocks is merged and, therefore, some

blocks are unchained

Rebuild vs. Coalesce

Indexes: Structure, Splits and Free Space Management Internals25 08/06/2017

Pro Cons

Rebuild

 Doesn’t lock table

(online rebuilds only)

 Reclaim all the free

space

 Locks table during rebuild

(offline rebuilds only)

 Doubles space usage

temporarily

 The index is completely

recreated (to do so large

sorts may be performed)

Coalesce

 Doesn’t lock table

 Current index structure

is reused

 Doesn’t reclaim all the free

space

 Can generate lot of redo

Unnecessary Reorganizations

Indexes: Structure, Splits and Free Space Management Internals26 08/06/2017

Unnecessary rebuild/coalesce may lead to sub-optimal data density in leaf

blocks

Too much free space, i.e. too low density

Too many block splits, i.e. too high density

Indexes: Structure, Splits and Free Space Management Internals27 08/06/2017

Bitmap

Bitmap

Indexes: Structure, Splits and Free Space Management Internals28 08/06/2017

A bitmap index is a regular B-tree, only the internal key differs from the non-

bitmap index!

The key is composed by:

Indexed column(s)

Start/End ROWID

Bitmap representing the rows that have the key

– To save space it is “compressed”

Summary

Indexes: Structure, Splits and Free Space Management Internals29 08/06/2017

B-tree indexes cannot become

“unbalanced”

Deleted space in an index can be

reused

Indexes do not need to be regularly

rebuilt

Questions and Answers
Christian Antognini

Senior Principal Consultant

christian.antognini@trivadis.com

@ChrisAntognini

08/06/2017 Indexes: Structure, Splits and Free Space Management Internals30

