
BASEL BERN BRUGG DÜSSELDORF FRANKFURT A.M. FREIBURG I.BR. GENEVA

HAMBURG COPENHAGEN LAUSANNE MUNICH STUTTGART VIENNA ZURICH

@ChrisAntognini antognini.ch/blog

Christian Antognini

Adaptive Plans

@ChrisAntognini

Adaptive Plans2 2018-02-01

Senior principal consultant, trainer and partner at Trivadis

christian.antognini@trivadis.com

http://antognini.ch

Focus: get the most out of database engines

Logical and physical database design

Query optimizer

Application performance management

Author of Troubleshooting Oracle Performance (Apress, 2008/14)

OakTable Network, Oracle ACE Director

Adaptive Plans – Challenge

Adaptive Plans3 2018-02-01

Object statistics don’t always provide sufficient information

To get additional insights, the query optimizer can use features like dynamic

sampling and cardinality feedback

They don’t solve all issues, though

Adaptive Plans – Concept

Adaptive Plans4 2018-02-01

The query optimizer can postpone some decisions until the execution phase

The idea is to leverage information collected while executing part of an

execution plan to determine how another part should be carried out

The query optimizer uses adaptive plans in three situations

To switch the join method from a NL to a HJ and vice versa

To switch the PX distribution method from hash to broadcast/round-robin

To disable the access to a dimension for execution plans using the star

transformation

Agenda

Adaptive Plans5 2018-02-01

1. Join Method Switch

2. Star Transformation

3. Configuration

4. Dynamic Performance Views

Adaptive Plans6 2018-02-01

Join Method Switch

Join Method Switch

Adaptive Plans7 2018-02-01

The query optimizer adds subplans (one NL and one HJ) to execution plans

One of the alternatives is the default plan

One of the subplans is chosen during the first execution

The choice is based on the number of rows actually processed

The query optimizer computes an inflection point

A new row source operation is used to partially buffer and count the rows

STATISTICS COLLECTOR

The execution plan that is actually executed is called the final plan

Join Method Switch Example

Adaptive Plans8 2018-02-01

SELECT * FROM t1, t2 WHERE t1.id = t2.id AND t1.n = 666

| Id | Operation | Name |

0	SELECT STATEMENT	
1	HASH JOIN	
2	NESTED LOOPS	
3	NESTED LOOPS	
4	STATISTICS COLLECTOR	
5	TABLE ACCESS FULL	T1
6	INDEX UNIQUE SCAN	T2_PK
7	TABLE ACCESS BY INDEX ROWID	T2
8	TABLE ACCESS FULL	T2

adaptive_plan.sql

Join Method Switch Example

Adaptive Plans9 2018-02-01

SELECT * FROM t1, t2 WHERE t1.id = t2.id AND t1.n = 666

| Id | Operation | Name |

0	SELECT STATEMENT	
1	HASH JOIN	
2	NESTED LOOPS	
3	NESTED LOOPS	
4	STATISTICS COLLECTOR	
5	TABLE ACCESS FULL	T1
6	INDEX UNIQUE SCAN	T2_PK
7	TABLE ACCESS BY INDEX ROWID	T2
8	TABLE ACCESS FULL	T2

adaptive_plan.sql

Join Method Switch Example

Adaptive Plans10 2018-02-01

SELECT * FROM t1, t2 WHERE t1.id = t2.id AND t1.n = 666

| Id | Operation | Name |

0	SELECT STATEMENT	
1	HASH JOIN	
2	NESTED LOOPS	
3	NESTED LOOPS	
4	STATISTICS COLLECTOR	
5	TABLE ACCESS FULL	T1
6	INDEX UNIQUE SCAN	T2_PK
7	TABLE ACCESS BY INDEX ROWID	T2
8	TABLE ACCESS FULL	T2

adaptive_plan.sql

Join Method Switch Inflection Point

Adaptive Plans11 2018-02-01

For both join methods, the cost associated to different cardinalities is

estimated

The cardinality of the outer table varies

The cardinality of the inner table remains fixed

The query optimizer uses a binary search

The search takes place between a minimum and maximum cardinality

Join Method Switch Inflection Point Example

Adaptive Plans12 2018-02-01

20

200

2,000

20,000

C
o

s
t

Cardinality
(In Order of Execution)

Nested Loops Join

Hash Join

Join Method Switch Limitations

Adaptive Plans13 2018-02-01

The amount of memory that is allocated by STATISTICS COLLECTOR is

limited

If a too large buffer is required, no adaptive plan is used

Partition-wise joins can’t be adaptive

STATISTICS COLLECTOR can’t return a LOB

An XMLTYPE or an object can’t be involved

adaptive_plan_lob.sql

adaptive_plan_obj.sql

Adaptive Plans14 2018-02-01

Star Transformation

Star Transformation

Adaptive Plans15 2018-02-01

With the star transformation, the data of each dimension that has a restriction

applied to it might be “joined” to the corresponding bitmap index of the fact

If the number of rowids returned by such a “join” is underestimated, applying

the filter can be detrimental to the performance

With an adaptive plan the access to some dimensions can be disabled

Decision takes place during the first execution only

Star Transformation Example

Adaptive Plans16 2018-02-01

adaptive_bitmap_node.sql

| Operation | Name |

…	
VIEW	VW_ST_5497B905
NESTED LOOPS	
BITMAP CONVERSION TO ROWIDS	
BITMAP AND	
BITMAP MERGE	
BITMAP KEY ITERATION	
TABLE ACCESS FULL	COLORS
BITMAP INDEX RANGE SCAN	CAR_COLOR_IDX
STATISTICS COLLECTOR	
BITMAP MERGE	
BITMAP KEY ITERATION	
TABLE ACCESS FULL	MODELS
BITMAP INDEX RANGE SCAN	CAR_MODEL_IDX
…	
TABLE ACCESS BY USER ROWID	CARS

Adaptive Plans17 2018-02-01

Configuration

12.1 – OPTIMIZER_ADAPTIVE_FEATURES

Adaptive Plans18 2018-02-01

Enables or disables adaptive query optimization features

Adaptive plans

SQL plan directives

Automatic reoptimization (it isn’t the case in 12.1.0.1; bug 16824474)

Dynamic statistics are controlled by OPTIMIZER_DYNAMIC_SAMPLING

The default value is TRUE

12.2 – OPTIMIZER_ADAPTIVE_PLANS

Adaptive Plans19 2018-02-01

Enables or disables adaptive plans

The default value is TRUE

12.2 – OPTIMIZER_ADAPTIVE_STATISTICS

Adaptive Plans20 2018-02-01

Enables or disables adaptive statistics

SQL plan directives

– The creation is always enabled, only their use is managed

Performance feedback

Statistics feedback

– The functionality of 11.2 is always enabled

Dynamic statistics are controlled by OPTIMIZER_DYNAMIC_SAMPLING

The default value is FALSE

Backport of 12.2 Configuration in 12.1.0.2

Adaptive Plans21 2018-02-01

Patch to backport the 12.2 initialization parameters to 12.1.0.2:

22652097: PROVIDE SEPARATE CONTROLS FOR ADAPTIVE PLANS

AND ADAPTIVE STATISTICS FEATURES

When installed, OPTIMIZER_ADAPTIVE_FEATURES can no longer be set

Patch 22652097 is included in PBP Oct 2017

By default it’s disabled, refer to MOS note 2312911.1 for information

Common Configurations in 12.2 or Patched 12.1

Adaptive Plans22 2018-02-01

Minimal Adaptability (11.2 Default)

OPTIMIZER_ADAPTIVE_PLANS = FALSE

OPTIMIZER_ADAPTIVE_STATISTICS = FALSE

AUTO_STAT_EXTENSIONS = OFF

Medium Adaptability (12.2 Default)

OPTIMIZER_ADAPTIVE_PLANS = TRUE

OPTIMIZER_ADAPTIVE_STATISTICS = FALSE

AUTO_STAT_EXTENSIONS = OFF

Significant Adaptability

OPTIMIZER_ADAPTIVE_PLANS = TRUE

OPTIMIZER_ADAPTIVE_STATISTICS = TRUE

AUTO_STAT_EXTENSIONS = OFF

Maximum Adaptability (12.1 Default)

OPTIMIZER_ADAPTIVE_PLANS = TRUE

OPTIMIZER_ADAPTIVE_STATISTICS = TRUE

AUTO_STAT_EXTENSIONS = ON

Reporting Mode

Adaptive Plans23 2018-02-01

It’s useful to assess how an execution plan would change if adaptive plans are

activated

If enabled, the query optimizer generates adaptive plans but the execution

engine only use the default plan and checks whether it would “switch”

OPTIMIZER_ADAPTIVE_REPORTING_ONLY controls whether it’s enabled

FALSE (default) disables it

TRUE enables it for the adaptive features that are enabled

Reporting Mode – DBMS_XPLAN

Adaptive Plans24 2018-02-01

Use DBMS_XPLAN to get information about the “analysis”

In 12.1.0.1 might fail with an ORA-1001 (bug 17270605)

SELECT *

FROM table(dbms_xplan.display_cursor(format=>'report'))

adaptive_plan.sql

Reporting Mode – How to List the Cursors that Would

Be Impacted?

Adaptive Plans25 2018-02-01

There is no trivial way to find them Here’s a query that does that:

SELECT sql_id, child_number

FROM v$sql_plan p

WHERE other_xml IS NOT NULL

AND (sql_id, child_number) IN (SELECT sql_id, child_number

FROM v$sql

WHERE is_resolved_adaptive_plan IS NOT NULL)

AND EXISTS (SELECT 1

FROM XMLTable('/other_xml/display_map/row' PASSING XMLType(p.other_xml)

COLUMNS skp INTEGER PATH '@skp', op INTEGER PATH '@op') x,

XMLTable('/other_xml/display_map/report_display_map/row'

PASSING XMLType(other_xml)

COLUMNS skp INTEGER PATH '@skp', op INTEGER PATH '@op') r

WHERE x.op = r.op

AND x.skp <> r.skp)

Hints

Adaptive Plans26 2018-02-01

For join method switches and star transformation, as of 12.1.0.2 two hints are

available:

ADAPTIVE_PLAN

NO_ADAPTIVE_PLAN

Adaptive Plans27 2018-02-01

Dynamic Performance Views

V$SQL.IS_RESOLVED_ADAPTIVE_PLAN

Adaptive Plans28 2018-02-01

New column set for join method switches and star transformation only

NULL: the execution plan associated to the cursor isn’t adaptive

N: the final execution plan not yet determined

Y: the final execution plan was determined

– Also set if reporting mode is enabled

V$ACTIVE_SESSION_HISTORY.

SQL_ADAPTIVE_PLAN_RESOLVED

Adaptive Plans29 2018-02-01

Available as of 12.1.0.2

Don’t rely on the provided value (bug?)

Summary

Adaptive Plans30 2018-02-01

Some decisions are postponed

during the execution

The query optimizer is getting more

and more dynamic

Questions and Answers

Christian Antognini

Senior Principal Consultant

christian.antognini@trivadis.com

@ChrisAntognini

2018-02-01 Adaptive Plans31

