

Vertex

edge

Graph Database

(also called node)

vertex (node)

vertex
properties

vertex ID

edge

edge label

edge
properties

edge ID

directed
edge

•

•

•

•

•

•

•

•

Didn’t test it fully, got some of it working
on Windows embedded in a Java project,
and a .bat file is included in the ZIP

https://www.oracle.com/technetwork/oracle-labs/parallel-graph-analytix/downloads/index.html
https://docs.oracle.com/cd/E56133_01/latest/tutorials/index.html
https://docs.oracle.com/cd/E56133_01/latest/reference/index.html
https://docs.oracle.com/cd/E56133_01/latest/javadocs/index.html

•

•

DEMO

•

•

•

•

•

•

Simplified version

Product Order

CustomerCountry

Confirm

LivesIn

Reference

Product Order

Customer

Confirm

Reference

Country= “<country>”

OrderCustomer
Confirm

Country= “<country>” Product= “<product>”

Product Customer

Country

LivesIn

Buys
Quantity= “”
Amount= “”
OrderDate= “”

Product Customer

Country

LivesIn

Buys
Quantity= “”
Amount= “”
OrderDate= “”

Let’s implement this one

Name Null? Type
----- -------- -----------------------
VID NOT NULL NUMBER
K NVARCHAR2(3100)
T INTEGER
V NVARCHAR2(15000)
VN NUMBER
VT TIMESTAMP WITH TIMEZONE

47

name: Matthew McConaughey [T=1]
age: 47 [T=2]
birth-date:1969-11-04 12:00:00.0 [T=5]

Name Null? Type
------- -------- ------------------------
EID NOT NULL NUMBER
SVID NOT NULL NUMBER
DVID NOT NULL NUMBER
EL NVARCHAR2(3100)
K NVARCHAR2(3100)
T INTEGER
V NVARCHAR2(15000)
VN NUMBER
VT TIMESTAMP WITH TIME ZONE

46 47

admires
weight:1.0 [T=4]

1102

•

•

•

•

ID Data type Column

1 String V

2 Integer VN

3 Float VN

4 Double VN

5 Date VT

6 Boolean V

7 Long VN

8 Short VN

9 Byte VN

10 Char V

101 Serializable V

DEMO

If you feel like having more questions than before this presentation,
it’s a good thing!
It means you have to try graphs for real…

Create a file by hand
A graph can be built by hand simply defining nodes and edges one by one with all their properties and labels.
This notebook connect to a PGX server instance, but the same works on the standalone PGX shell
(./bin/pgx) (not the visualization, just the build and test queries part).

Requirements & Environment
This notebook make use of the *PGX 2.7.0 Server* release available at
https://www.oracle.com/technetwork/oracle-labs/parallel-graph-analytix/downloads/index.html
(https://www.oracle.com/technetwork/oracle-labs/parallel-graph-analytix/downloads/index.html).
The PGX server is configured to listen on port 7008 without SSL and authentication is disabled. The ZIP file
has been extracted into /opt and created the folder /opt/pgx-2.7.0 . To connect to this PGX server
python will use the *PGX 2.7.0 Java client* release available at the above url and extracted into /opt/pgx-
2.7.0-java-client .
(Beware if extracted in the same location as the Server archive, both will try to create the pgx-2.7.0 folder
resulting in one overriding the other. Extract the Java client archive first, rename the extracted folder and
after you can safely extract the Server archive.)
You can extract both these archives in the location of your choice and simply need to adapt the below paths
(the one used in the startJVM call and the one to start the PGX server.

This Notebook is using python 3.6, but the graph code works the same on python 2.7. *JPype1* is required
and can be installed using pip (this package is the one connecting python to the JVM where the PGX
commands will be executed). graphviz is used to display the graph and can be installed using pip , this
method will not work with huge graphs because the resulting image will be too big.

Import required packages

In [1]:

from jpype import *
import os

Setup JVM
Start JVM passing the PGX 2.7.0 classpath

In [2]:

%load -s _get_pgx_class_path ../graphUtils.py
def _get_pgx_class_path(pgx_directory):
 class_path_list = []
 for root, dirs, files in os.walk(pgx_directory):
 for file in files:
 if file.endswith('.jar'):
 class_path_list.append(os.path.join(root, file))
 return ':'.join(class_path_list)

https://www.oracle.com/technetwork/oracle-labs/parallel-graph-analytix/downloads/index.html

In [3]:

startJVM(getDefaultJVMPath(), "-ea", "-Djava.class.path="+_get_pgx_class_path('/opt/pgx
-2.7.0-java-client/lib'))

Create a session on the PGX 2.7.0 server
Need to start the PGX 2.7.0 server before to continue:

/opt/pgx-2.7.0/bin/start-server

In [4]:

session = JClass('oracle.pgx.api.Pgx').createSession("http://localhost:7008/", "my_sess
ion")

Create a new graph

In [5]:

new builder
builder = session.newGraphBuilder(JClass('oracle.pgx.common.types.IdType').LONG)

define some nodes (node ID is unique!)
builder.addVertex(1).addLabel("person").setProperty("name", "Francesco").setProperty("c
ountry", "Italy")
builder.addVertex(2).addLabel("person").setProperty("name", "Christian").setProperty("c
ountry", "Switzerland")
builder.addVertex(3).addLabel("session").setProperty("name", "Starting an Oracle Analyt
ics Cloud Journey from 0")
builder.addVertex(4).addLabel("event").setProperty("name", "ITOUG 2019")
builder.addVertex(5).addLabel("country").setProperty("name", "Italy")
builder.addVertex(6).addLabel("country").setProperty("name", "Switzerland")
builder.addVertex(7).addLabel("continent").setProperty("name", "Europe")

define some edges (edge ID is unique!)
builder.addEdge(0, 1, 2).setLabel("friendOf")
builder.addEdge(1, 1, 3).setLabel("presents")
builder.addEdge(2, 2, 3).setLabel("presents")
builder.addEdge(3, 3, 4).setLabel("scheduledAt")
builder.addEdge(4, 1, 5).setLabel("livesIn")
builder.addEdge(5, 2, 6).setLabel("livesIn")
builder.addEdge(6, 5, 7).setLabel("partOf")
builder.addEdge(7, 6, 7).setLabel("partOf")
builder.addEdge(8, 4, 5).setLabel("happensIn")

Build new graph

Out[5]:

<jpype._jclass.oracle.pgx.api.graphbuilder.EdgeBuilderImpl at 0x7fd8ec092d
a0>

In [6]:

graph = builder.build()

print(graph)

Visualize the graph

In [7]:

%load -s renderGraph ../graphUtils.py
def renderGraph(graph):
 from graphviz import Digraph

 # get all the vertices of the graph
 vertices = graph.getVertices()
 # create a new visualization
 dot = Digraph(comment='Graph')
 # loop over vertices
 for v in vertices.iterator():
 dot.node(str(v.getId()), v.getProperty("name"))

 # loop over vertices to get 'out' edges
 for v in vertices.iterator():
 edges = v.getOutEdges()
 # loop over 'out' edges
 for e in edges:
 dot.edge(str(e.getSource().getId()), str(e.getDestination().getId()), label
=e.getLabel())

 # return (display) graph
 return dot

PgxGraph[name=anonymous_graph_1,N=7,E=9,created=1549205618869]

In [8]:

renderGraph(graph)

Out[8]:

Francesco

Christian

friendOf

Starting an Oracle Analytics Cloud Journey from 0

presents

Italy

livesIn

presents

Switzerland

livesIn

ITOUG 2019

scheduledAt

happensIn

Europe

partOf

partOf

In []:

Create a graph in the database
Using the SH sample schema as base (available on https://github.com/oracle/db-sample-schemas
(https://github.com/oracle/db-sample-schemas)), taking customers, countries, products and sales as source
tables for the graph.

Requirements & Environment
This notebook uses the Jupyter magical keyword %sql (single line SQL) and %%sql (multiple lines SQL)
which you can find on https://github.com/catherinedevlin/ipython-sql
(https://github.com/catherinedevlin/ipython-sql).
The database is installed on the same host than Jupyter therefore uses localhost as hostname, port is
the default 1521 and the PDB name is ORCLPDB1 . The connection is done using scott as username and
Admin123 as password. Adapt these settings in all the commands when required to match your

environment.

Pandas is used to visualize, analyze and plot the result of some queries, it can be installed using pip .

Create a new empty graph in the database
Call a package method, all the available methods and their properties can be found at
https://docs.oracle.com/en/database/oracle/oracle-database/18/spgdg/OPG_APIS-reference.html
(https://docs.oracle.com/en/database/oracle/oracle-database/18/spgdg/OPG_APIS-reference.html) This is
equivalent to

BEGIN
 OPG_APIS.CREATE_PG('itoug', 4, 8, '');
END;

https://github.com/oracle/db-sample-schemas
https://github.com/catherinedevlin/ipython-sql
https://docs.oracle.com/en/database/oracle/oracle-database/18/spgdg/OPG_APIS-reference.html

In [1]:

import cx_Oracle
con = cx_Oracle.connect('scott/Admin123@localhost:1521/ORCLPDB1')
cur = con.cursor()
cur.callproc('OPG_APIS.CREATE_PG', ['itoug', 4, 8, ''])
cur.close()
con.close()

In [2]:

%load_ext sql
%sql oracle://scott:Admin123@localhost:1521/?service_name=ORCLPDB1

In [3]:

%%sql
SELECT owner, table_name
FROM all_tables
WHERE owner = 'SCOTT'
AND table_name like 'ITOUG%'
ORDER BY table_name

Inspect source data to define IDs and properties

Out[2]:

'Connected: scott@'

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
0 rows affected.

Out[3]:

owner table_name

SCOTT ITOUGGE$

SCOTT ITOUGGT$

SCOTT ITOUGIT$

SCOTT ITOUGSS$

SCOTT ITOUGVT$

In [4]:

%%sql
SELECT 'customer ID' as id, MIN(cust_id) as min_id, MAX(cust_id) as max_id, COUNT(DISTI
NCT cust_id) as unique_id, COUNT(*) as nrows FROM sh.customers
UNION ALL
SELECT 'product ID', MIN(prod_id), MAX(prod_id), COUNT(DISTINCT prod_id) as unique_id,
COUNT(*) as nrows FROM sh.products
UNION ALL
SELECT 'country ID', MIN(country_id), MAX(country_id), COUNT(DISTINCT country_id) as un
ique_id, COUNT(*) as nrows FROM sh.countries

There are potential overlaps in IDs of the 3 tables, but rows are unique by ID.
A solution could be to use a sequence to make sure to have uniques IDs for vertices.
In this case a "shortcut" will be used to make sure there is no overlap, simply by addint a fixed number to
each ID of the products and countries tables.

In [5]:

%%sql
SELECT 'customer ID' as id, MIN(cust_id) as min_id, MAX(cust_id) as max_id FROM sh.cust
omers
UNION ALL
SELECT 'product ID', MIN(prod_id + 200000), MAX(prod_id + 200000) FROM sh.products
UNION ALL
SELECT 'country ID', MIN(country_id + 300000), MAX(country_id + 300000) FROM sh.countri
es

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
0 rows affected.

Out[4]:

id min_id max_id unique_id nrows

customer ID 1 104500 55500 55500

product ID 13 148 72 72

country ID 52769 52791 23 23

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
0 rows affected.

Out[5]:

id min_id max_id

customer ID 1 104500

product ID 200013 200148

country ID 352769 352791

Create nodes
The T column is a value representing the data type (ref.
https://docs.oracle.com/cd/E56133_01/latest/reference/loader/file-system/plain-text-formats.html
(https://docs.oracle.com/cd/E56133_01/latest/reference/loader/file-system/plain-text-formats.html))

1) Countries
Data by row

In [6]:

%%sql result <<
SELECT country_id + 300000 as vid
, 'label' as k
, 1 as t
, 'country' as v
, null as vn FROM sh.countries
UNION ALL
SELECT country_id + 300000 as vid
, 'name' as k
, 1 as t
, country_name as v
, null as vn FROM sh.countries
UNION ALL
SELECT country_id + 300000 as vid
, 'isoCode' as k
, 1 as t
, country_iso_code as v
, null as vn FROM sh.countries
UNION ALL
SELECT country_id + 300000 as vid
, 'sourceId' as k
, 2 as t
, TO_CHAR(country_id) as v
, country_id as vn FROM sh.countries
ORDER BY 1,2

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
0 rows affected.
Returning data to local variable result

https://docs.oracle.com/cd/E56133_01/latest/reference/loader/file-system/plain-text-formats.html

In [7]:

import pandas as pd

result_df = result.DataFrame()
result_df.head(8)

Insert rows in ITOUGVT$
Because there isn't any date value, the 'vt' column isn't defined

Out[7]:

vid k t v vn

0 352769 isoCode 1 SG NaN

1 352769 label 1 country NaN

2 352769 name 1 Singapore NaN

3 352769 sourceId 2 52769 52769.0

4 352770 isoCode 1 IT NaN

5 352770 label 1 country NaN

6 352770 name 1 Italy NaN

7 352770 sourceId 2 52770 52770.0

In [8]:

%%sql
INSERT INTO ITOUGVT$ (vid, k, t, v, vn)
SELECT country_id + 300000 as vid
, 'label' as k
, 1 as t
, 'country' as v
, null as vn FROM sh.countries
UNION ALL
SELECT country_id + 300000 as vid
, 'name' as k
, 1 as t
, country_name as v
, null as vn FROM sh.countries
UNION ALL
SELECT country_id + 300000 as vid
, 'isoCode' as k
, 1 as t
, country_iso_code as v
, null as vn FROM sh.countries
UNION ALL
SELECT country_id + 300000 as vid
, 'sourceId' as k
, 2 as t
, TO_CHAR(country_id) as v
, country_id as vn FROM sh.countries
ORDER BY 1,2

2) Products
Data by row

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
92 rows affected.

Out[8]:

[]

In [9]:

%%sql result <<
SELECT prod_id + 200000 as vid
, 'label' as k
, 1 as t
, 'product' as v
, null as vn FROM sh.products
UNION ALL
SELECT prod_id + 200000 as vid
, 'name' as k
, 1 as t
, prod_name as v
, null as vn FROM sh.products
UNION ALL
SELECT prod_id + 200000 as vid
, 'category' as k
, 1 as t
, prod_category as v
, null as vn FROM sh.products
UNION ALL
SELECT prod_id + 200000 as vid
, 'subcategory' as k
, 1 as t
, prod_subcategory as v
, null as vn FROM sh.products
UNION ALL
SELECT prod_id + 200000 as vid
, 'listPrice' as k
, 3 as t
, TO_CHAR(prod_list_price) as v
, prod_list_price as vn FROM sh.products
UNION ALL
SELECT prod_id + 200000 as vid
, 'sourceId' as k
, 2 as t
, TO_CHAR(prod_id) as v
, prod_id as vn FROM sh.products
ORDER BY 1,2

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
0 rows affected.
Returning data to local variable result

In [10]:

result_df = result.DataFrame()
result_df.head(12)

Insert rows in ITOUGVT$
Because there isn't any date value, the 'vt' column isn't defined

Out[10]:

vid k t v vn

0 200013 category 1 Photo None

1 200013 label 1 product None

2 200013 listPrice 3 899.99 899.99

3 200013 name 1 5MP Telephoto Digital Camera None

4 200013 sourceId 2 13 13

5 200013 subcategory 1 Cameras None

6 200014 category 1 Peripherals and Accessories None

7 200014 label 1 product None

8 200014 listPrice 3 999.99 999.99

9 200014 name 1 17" LCD w/built-in HDTV Tuner None

10 200014 sourceId 2 14 14

11 200014 subcategory 1 Monitors None

In [11]:

%%sql
INSERT INTO ITOUGVT$ (vid, k, t, v, vn)
SELECT prod_id + 200000 as vid
, 'label' as k
, 1 as t
, 'product' as v
, null as vn FROM sh.products
UNION ALL
SELECT prod_id + 200000 as vid
, 'name' as k
, 1 as t
, prod_name as v
, null as vn FROM sh.products
UNION ALL
SELECT prod_id + 200000 as vid
, 'category' as k
, 1 as t
, prod_category as v
, null as vn FROM sh.products
UNION ALL
SELECT prod_id + 200000 as vid
, 'subcategory' as k
, 1 as t
, prod_subcategory as v
, null as vn FROM sh.products
UNION ALL
SELECT prod_id + 200000 as vid
, 'listPrice' as k
, 3 as t
, TO_CHAR(prod_list_price) as v
, prod_list_price as vn FROM sh.products
UNION ALL
SELECT prod_id + 200000 as vid
, 'sourceId' as k
, 2 as t
, TO_CHAR(prod_id) as v
, prod_id as vn FROM sh.products
ORDER BY 1,2

3) Customers
Data by row

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
432 rows affected.

Out[11]:

[]

In [12]:

%%sql result <<
SELECT cust_id as vid
, 'label' as k
, 1 as t
, 'customer' as v
, null as vn FROM sh.customers
UNION ALL
SELECT cust_id as vid
, 'name' as k
, 1 as t
, cust_first_name || ' ' || cust_last_name as v
, null as vn FROM sh.customers
UNION ALL
SELECT cust_id as vid
, 'gender' as k
, 1 as t
, cust_gender as v
, null as vn FROM sh.customers
UNION ALL
SELECT cust_id as vid
, 'maritalStatus' as k
, 1 as t
, cust_marital_status as v
, null as vn FROM sh.customers
WHERE cust_marital_status IS NOT NULL
UNION ALL
SELECT cust_id as vid
, 'yearOfBirth' as k
, 2 as t
, TO_CHAR(cust_year_of_birth) as v
, cust_year_of_birth as vn FROM sh.customers
UNION ALL
SELECT cust_id as vid
, 'sourceId' as k
, 2 as t
, TO_CHAR(cust_id) as v
, cust_id as vn FROM sh.customers
ORDER BY 1,2

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
0 rows affected.
Returning data to local variable result

In [13]:

result_df = result.DataFrame()
result_df.head(12)

Insert rows in ITOUGVT$
Because there isn't any date value, the 'vt' column isn't defined

Out[13]:

vid k t v vn

0 1 gender 1 M NaN

1 1 label 1 customer NaN

2 1 name 1 Abigail Kessel NaN

3 1 sourceId 2 1 1.0

4 1 yearOfBirth 2 1946 1946.0

5 2 gender 1 F NaN

6 2 label 1 customer NaN

7 2 name 1 Anne Koch NaN

8 2 sourceId 2 2 2.0

9 2 yearOfBirth 2 1957 1957.0

10 3 gender 1 M NaN

11 3 label 1 customer NaN

In [14]:

%%sql
INSERT INTO ITOUGVT$ (vid, k, t, v, vn)
SELECT cust_id as vid
, 'label' as k
, 1 as t
, 'customer' as v
, null as vn FROM sh.customers
UNION ALL
SELECT cust_id as vid
, 'name' as k
, 1 as t
, cust_first_name || ' ' || cust_last_name as v
, null as vn FROM sh.customers
UNION ALL
SELECT cust_id as vid
, 'gender' as k
, 1 as t
, cust_gender as v
, null as vn FROM sh.customers
WHERE cust_gender IS NOT NULL
UNION ALL
SELECT cust_id as vid
, 'maritalStatus' as k
, 1 as t
, cust_marital_status as v
, null as vn FROM sh.customers
WHERE cust_marital_status IS NOT NULL
UNION ALL
SELECT cust_id as vid
, 'yearOfBirth' as k
, 2 as t
, TO_CHAR(cust_year_of_birth) as v
, cust_year_of_birth as vn FROM sh.customers
WHERE cust_year_of_birth IS NOT NULL
UNION ALL
SELECT cust_id as vid
, 'sourceId' as k
, 2 as t
, TO_CHAR(cust_id) as v
, cust_id as vn FROM sh.customers
ORDER BY 1,2

Quick check on the actual content of the graph (only nodes)

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
315572 rows affected.

Out[14]:

[]

In [15]:

%%sql
SELECT v, COUNT(DISTINCT vid) FROM itougvt$
WHERE k = 'label'
GROUP BY v
ORDER BY 1

In [16]:

%%sql
SELECT k, COUNT(DISTINCT vid) FROM itougvt$
GROUP BY k
ORDER BY 2 DESC,1

Create edges (the orders)

1) Create a sequence
There isn't a real ID in the 'SALES' table, therefore there isn't anything on which to build EID (edge ID)

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
0 rows affected.

Out[15]:

v COUNT(DISTINCTVID)

country 23

customer 55500

product 72

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
0 rows affected.

Out[16]:

k COUNT(DISTINCTVID)

label 55595

name 55595

sourceId 55595

gender 55500

yearOfBirth 55500

maritalStatus 38072

category 72

listPrice 72

subcategory 72

isoCode 23

In [17]:

%%sql
CREATE SEQUENCE itoug_eid_seq

2) Customer -['livesIn']-> Country

In [18]:

%%sql result <<
SELECT null as eid
, cust_id as svid
, country_id as dvid
, 'livesIn' as el
, 'stateProvince' as k
, 1 as t
, cust_state_province as v FROM sh.customers
ORDER BY 2

In [19]:

result_df = result.DataFrame()
result_df.head()

Insert rows in ITOUGGE$
Because there isn't any date or numeric value, the 'vn' and 'vt' column aren't defined

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
0 rows affected.

Out[17]:

[]

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
0 rows affected.
Returning data to local variable result

Out[19]:

eid svid dvid el k t v

0 None 1 52789 livesIn stateProvince 1 England - Norfolk

1 None 2 52778 livesIn stateProvince 1 Salamanca

2 None 3 52770 livesIn stateProvince 1 Zeeland

3 None 4 52770 livesIn stateProvince 1 Utrecht

4 None 5 52789 livesIn stateProvince 1 England - Norfolk

In [20]:

%%sql
INSERT INTO ITOUGGE$ (eid, svid, dvid, el, k, t, v)
SELECT itoug_eid_seq.nextval
, svid, dvid, el, k, t, v FROM (
SELECT cust_id as svid
, country_id as dvid
, 'livesIn' as el
, 'stateProvince' as k
, 1 as t
, cust_state_province as v FROM sh.customers
ORDER BY 2
)

3) Customer -['buys']-> Product
Create a temporary table to assign a unique ID acting as EID to sales using the sequence

In [21]:

%%sql
CREATE TABLE tmp_orders AS
SELECT itoug_eid_seq.nextval as eid
, svid, dvid, el, quantity_sold, amount_sold, order_date FROM (
SELECT null as eid
, cust_id as svid
, prod_id + 200000 as dvid
, 'buys' as el
, SUM(quantity_sold) as quantity_sold
, SUM(amount_sold) as amount_sold
, time_id as order_date FROM sh.sales
GROUP BY cust_id, prod_id, time_id
)

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
55500 rows affected.

Out[20]:

[]

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
0 rows affected.

Out[21]:

[]

In [22]:

%%sql result <<
SELECT eid
, svid
, dvid
, el
, 'quantity' as k
, 3 as t
, TO_CHAR(quantity_sold) as v
, quantity_sold as vn
, null as vt FROM tmp_orders
UNION ALL
SELECT eid
, svid
, dvid
, el
, 'amount' as k
, 3 as t
, TO_CHAR(amount_sold) as v
, amount_sold as vn
, null as vt FROM tmp_orders
UNION ALL
SELECT eid
, svid
, dvid
, el
, 'orderDate' as k
, 5 as t
, TO_CHAR(order_date, 'YYYY-MM-DD') as v
, null as vn
, order_date as vt FROM tmp_orders
ORDER BY 1,2,3,4,5

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
0 rows affected.
Returning data to local variable result

In [23]:

result_df = result.DataFrame()
result_df.head(12)

Insert rows in ITOUGGE$

Out[23]:

eid svid dvid el k t v vn vt

0 55501 2273 200013 buys amount 3 1232.16 1232.16 NaT

1 55501 2273 200013 buys orderDate 5 1998-01-10 None 1998-01-10

2 55501 2273 200013 buys quantity 3 1 1 NaT

3 55502 1422 200013 buys amount 3 1232.16 1232.16 NaT

4 55502 1422 200013 buys orderDate 5 1998-01-20 None 1998-01-20

5 55502 1422 200013 buys quantity 3 1 1 NaT

6 55503 3783 200013 buys amount 3 1232.16 1232.16 NaT

7 55503 3783 200013 buys orderDate 5 1998-01-20 None 1998-01-20

8 55503 3783 200013 buys quantity 3 1 1 NaT

9 55504 6543 200013 buys amount 3 1232.16 1232.16 NaT

10 55504 6543 200013 buys orderDate 5 1998-01-20 None 1998-01-20

11 55504 6543 200013 buys quantity 3 1 1 NaT

In [24]:

%%sql
INSERT INTO itougge$ (eid, svid, dvid, el, k, t, v, vn, vt)
SELECT eid
, svid
, dvid
, el
, 'quantity' as k
, 3 as t
, TO_CHAR(quantity_sold) as v
, quantity_sold as vn
, null as vt FROM tmp_orders
UNION ALL
SELECT eid
, svid
, dvid
, el
, 'amount' as k
, 3 as t
, TO_CHAR(amount_sold) as v
, amount_sold as vn
, null as vt FROM tmp_orders
UNION ALL
SELECT eid
, svid
, dvid
, el
, 'orderDate' as k
, 5 as t
, TO_CHAR(order_date, 'YYYY-MM-DD') as v
, null as vn
, order_date as vt FROM tmp_orders
ORDER BY 1,2,3,4,5

Drop the temporary table

In [25]:

%%sql
DROP TABLE tmp_orders

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
2085399 rows affected.

Out[24]:

[]

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
0 rows affected.

Out[25]:

[]

In [26]:

%%sql
DROP SEQUENCE itoug_eid_seq

Quick check on the actual content of the graph (only edges)

In [27]:

%%sql
SELECT el, COUNT(DISTINCT eid) FROM itougge$
GROUP BY el
ORDER BY 1

In [28]:

%%sql
SELECT k, COUNT(DISTINCT eid) FROM itougge$
GROUP BY k
ORDER BY 2 DESC,1

The graph content is now created into the database. In the next notebook
(3%20Load%20graph%20from%20database.ipynb) the graph will be loaded into PGX and used for analysis.

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
0 rows affected.

Out[26]:

[]

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
0 rows affected.

Out[27]:

el COUNT(DISTINCTEID)

buys 695133

livesIn 55500

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
0 rows affected.

Out[28]:

k COUNT(DISTINCTEID)

amount 695133

orderDate 695133

quantity 695133

stateProvince 55500

http://192.168.56.3:8888/files/ITOUG_2019/3%20Load%20graph%20from%20database.ipynb

Load a graph from database into PGX
The graph is stored in an Oracle 18c (18.3.0) database and will be loaded in the PGX server installed with
the database.

Requirements & Environment
This notebook make use of PGX embedded into the Oracle Database installation. The database is installed
with ORACLE_HOME = /opt/oracle/product/18c/dbhome_1 , PGX can be found in
$ORACLE_HOME/md/property_graph/pgx/ . The PGX server is configured to listen on port 7007 without

SSL and authentication is disabled.

Pandas is used to visualize, analyze and plot the result of some queries, it can be installed using pip .

In [1]:

%load_ext sql
%sql oracle://scott:Admin123@localhost:1521/?service_name=ORCLPDB1

1) Prepare for loading
setup environment (load libs etc.)
connect to PGX
build graph configuration

Import required packages

In [2]:

from jpype import *
import os

Setup & start JVM

In [3]:

%load -s _get_pgx_class_path ../graphUtils.py
def _get_pgx_class_path(pgx_directory):
 class_path_list = []
 for root, dirs, files in os.walk(pgx_directory):
 for file in files:
 if file.endswith('.jar'):
 class_path_list.append(os.path.join(root, file))
 return ':'.join(class_path_list)

Out[1]:

'Connected: scott@'

In [4]:

pgxPath = '/opt/oracle/product/18c/dbhome_1/md/property_graph/lib/'
startJVM(getDefaultJVMPath(), "-ea", "-Djava.class.path="+_get_pgx_class_path(pgxPath))

Create session
Need to start the PGX server before to continue:

/opt/oracle/product/18c/dbhome_1/md/property_graph/pgx/bin/start-server

In [5]:

PgxClass = JClass('oracle.pgx.api.Pgx')
session = PgxClass.createSession("http://localhost:7007/", "my_session")
print(session)

Build config for nodes and edges properties (full load of all the possible existing properties)

In [6]:

%%sql
WITH properties AS (
 SELECT DISTINCT k, t, 'Vertex' AS kind
 FROM itougvt$
 UNION ALL
 SELECT DISTINCT k, t, 'Edge' AS kind
 FROM itougge$
)
,cfg AS (
 SELECT '.add' || kind || 'Property("' || k || '",PropertyTypeClass.'
 || CASE WHEN t = 1 THEN 'STRING' WHEN t = 2 THEN 'INTEGER' WHEN t = 3 THEN 'FL
OAT' WHEN t = 5 THEN 'DATE' WHEN t = 6 THEN 'BOOLEAN' END
 || ')' AS prop
 FROM properties
) SELECT LISTAGG(prop,'') WITHIN GROUP(ORDER BY prop) FROM cfg

Need to replace 'DATE' types
This version doesn't support DATE as type in PGQL queries results, therefore it's easier to switch them to
string (waiting a fix in a future release).

PgxSession[ID=37e2088c-999c-4de2-b615-e5c220929402,source=my_session]

 * oracle://scott:***@localhost:1521/?service_name=ORCLPDB1
0 rows affected.

Out[6]:

.addEdgeProperty("amount",PropertyTypeClass.FLOAT).addEdgeProperty("orderDate",PropertyTypeCla

In [7]:

GraphConfigBuilderClass = JClass('oracle.pgx.config.GraphConfigBuilder')
PropertyTypeClass = JClass('oracle.pgx.common.types.PropertyType')

cfg = GraphConfigBuilderClass.forPropertyGraphRdbms()\
 .setUsername("scott")\
 .setPassword("Admin123")\
 .setName("itoug")\
 .setMaxNumConnections(4)\
 .setJdbcUrl("jdbc:oracle:thin:@localhost:1521/ORCLPDB1")\
 .setLoadEdgeLabel(True)\
 .addEdgeProperty("amount",PropertyTypeClass.FLOAT).addEdgeProperty("orderDate",Prop
ertyTypeClass.STRING).addEdgeProperty("quantity",PropertyTypeClass.FLOAT).addEdgeProper
ty("stateProvince",PropertyTypeClass.STRING).addVertexProperty("category",PropertyTypeC
lass.STRING).addVertexProperty("gender",PropertyTypeClass.STRING).addVertexProperty("is
oCode",PropertyTypeClass.STRING).addVertexProperty("label",PropertyTypeClass.STRING).ad
dVertexProperty("listPrice",PropertyTypeClass.FLOAT).addVertexProperty("maritalStatus",
PropertyTypeClass.STRING).addVertexProperty("name",PropertyTypeClass.STRING).addVertexP
roperty("sourceId",PropertyTypeClass.INTEGER).addVertexProperty("subcategory",PropertyT
ypeClass.STRING).addVertexProperty("yearOfBirth",PropertyTypeClass.INTEGER)
cfg = cfg.build()

print(cfg)

3) Load graph

In [8]:

OraclePropertyGraphClass = JClass('oracle.pg.rdbms.OraclePropertyGraph')
opg = OraclePropertyGraphClass.getInstance(cfg)

print(opg)

In [9]:

pgxGraph = session.readGraphWithProperties(opg.getConfig())

print(pgxGraph)

{"vertex_id_type":"long","format":"pg","attributes":{},"db_engine":"RDBM
S","username":"scott","jdbc_url":"jdbc:oracle:thin:@localhost:1521/ORCLPDB
1","name":"itoug","error_handling":{},"loading":{"load_edge_label":tru
e},"edge_props":[{"name":"amount","type":"float"},{"name":"orderDate","typ
e":"string"},{"name":"quantity","type":"float"},{"name":"stateProvince","t
ype":"string"}],"vertex_props":[{"name":"category","type":"string"},{"nam
e":"gender","type":"string"},{"name":"isoCode","type":"string"},{"name":"l
abel","type":"string"},{"name":"listPrice","type":"float"},{"name":"marita
lStatus","type":"string"},{"name":"name","type":"string"},{"name":"sourceI
d","type":"integer"},{"name":"subcategory","type":"string"},{"name":"yearO
fBirth","type":"integer"}],"max_num_connections":4,"password":"SHA-256: [B
@5b1ebf56"}

oraclepropertygraph with name itoug

PgxGraph[name=itoug,N=55595,E=695133,created=1549206288208]

Test graph
Count number of nodes and edges

In [10]:

print('Graph has ' + str(pgxGraph.getNumEdges()) + ' edges')
print('Graph has ' + str(pgxGraph.getNumVertices()) + ' vertices')

4) Use the graph

Sample PGQL query
PGQL specification can be found at http://pgql-lang.org/ (http://pgql-lang.org/)
PGX 2.5.1 coming with Oracle Database 18c supports PGQL 1.0, PGX 2.6.1+ supports PGQL 1.1

In [11]:

query = ("SELECT c.name, p.name, b.orderDate, b.amount, b.quantity "
 "WHERE (c WITH label = 'customer') -[b:buys]-> (p WITH label = 'product') LIMI
T 10"
)
pgxResultSet = pgxGraph.queryPgql(query)

print(pgxResultSet)

pgxResults = pgxResultSet.getResults()
for r in pgxResults.iterator():
 print(r.getString(0), 'bought a quantity of', r.getFloat(4), r.getString(1), 'for a
price of', r.getFloat(3), 'on', r.getString(2))

Graph has 695133 edges
Graph has 55595 vertices

PgqlResultSetImpl[graph=itoug,numResults=10]
Anne Koch bought a quantity of 1.0 5MP Telephoto Digital Camera for a pric
e of 1205.99 on 1998-08-05 00:00:00.0
Anne Koch bought a quantity of 2.0 5MP Telephoto Digital Camera for a pric
e of 2411.98 on 1998-10-05 00:00:00.0
Anne Koch bought a quantity of 1.0 5MP Telephoto Digital Camera for a pric
e of 1232.16 on 1998-01-30 00:00:00.0
Rosamond Krider bought a quantity of 2.0 5MP Telephoto Digital Camera for
a price of 2367.85 on 2001-01-17 00:00:00.0
Rosamond Krider bought a quantity of 2.0 5MP Telephoto Digital Camera for
a price of 2059.71 on 2000-10-17 00:00:00.0
Rosamond Krider bought a quantity of 1.0 5MP Telephoto Digital Camera for
a price of 1029.1 on 2000-11-16 00:00:00.0
Raina Silverberg bought a quantity of 1.0 5MP Telephoto Digital Camera for
a price of 1210.21 on 1999-02-20 00:00:00.0
Bertilde Sexton bought a quantity of 1.0 5MP Telephoto Digital Camera for
a price of 1001.7 on 2001-04-20 00:00:00.0
Erica Vandermark bought a quantity of 1.0 5MP Telephoto Digital Camera for
a price of 1058.14 on 2000-06-25 00:00:00.0
Madallyn Ladd bought a quantity of 2.0 5MP Telephoto Digital Camera for a
price of 2140.02 on 1999-01-20 00:00:00.0

http://pgql-lang.org/

In [12]:

%load -s pgql2dictionary ../graphUtils.py
def pgql2dictionary(pgxResultSet):
 dk = {}
 resultElements = pgxResultSet.getPgqlResultElements()
 for i in range(len(resultElements)):
 re = resultElements.get(i)
 dk[re.getVarName()] = str(re.getElementType())

 # define the dictionary
 d = {}
 # add the empty list to dictionary
 for k in dk:
 d[k] = []

 # append values
 pgxResults = pgxResultSet.getResults()
 for r in pgxResults.iterator():
 for k in dk:
 if dk[k] == 'STRING':
 d[k].append(r.getString(k))
 elif dk[k] == 'VERTEX':
 d[k].append('vertex('+str(r.getVertex(k).getId())+')')
 elif dk[k] == 'EDGE':
 d[k].append('edge('+str(r.getEdge(k).getId())+')')
 elif dk[k] == 'LONG':
 d[k].append(r.getLong(k))
 elif dk[k] == 'DOUBLE':
 d[k].append(r.getDouble(k))
 elif dk[k] == 'FLOAT':
 d[k].append(r.getFloat(k))
 else:
 #print(dk[k])
 d[k].append('N/A')
 return d

In [13]:

import pandas as pd

query = ("SELECT p.name as prod_name, SUM(b.quantity) as total_quantity, SUM(b.amount)
as total_amount "
 "WHERE (p WITH label = 'product') <-[b:buys]- (c) "
 "GROUP BY p.name"
)
pgxResultSet = pgxGraph.queryPgql(query)

df = pd.DataFrame(pgql2dictionary(pgxResultSet))
df.head()

In [14]:

df.describe(include='all')

Out[13]:

prod_name total_quantity total_amount

0 Comic Book Heroes 4572.0 101214.599781

1 External 6X CD-ROM 13043.0 577580.352684

2 O/S Documentation Set - German 12429.0 604081.908741

3 Deluxe Mouse 12837.0 377400.310974

4 Music CD-R 14315.0 301848.198940

Out[14]:

prod_name total_quantity total_amount

count 71 71.000000 7.100000e+01

unique 71 NaN NaN

top O/S Documentation Set - English NaN NaN

freq 1 NaN NaN

mean NaN 12941.450704 1.383181e+06

std NaN 6024.180200 2.461307e+06

min NaN 710.000000 2.793333e+04

25% NaN 8092.000000 2.572828e+05

50% NaN 12429.000000 5.130911e+05

75% NaN 16613.000000 1.040238e+06

max NaN 29282.000000 1.501164e+07

In [16]:

df.nlargest(10, 'total_amount').plot(kind='bar',x='prod_name',y='total_amount')

Out[16]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f38cb3b3eb8>

In [17]:

df.nlargest(10, 'total_quantity').plot(kind='bar',x='prod_name',y='total_quantity')

Analysis with graph algorithms
Run a pagerank algorithm on the graph to find the most important (top pagerank score) nodes

Out[17]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f38cb341630>

In [18]:

analyst = session.createAnalyst()
pagerank = analyst.pagerank(pgxGraph)
query = ("SELECT x, x.label, x.name, x."+pagerank.getName()+" "
 "WHERE (x) ORDER BY x."+pagerank.getName()+" DESC LIMIT 10"
)

pgxResultSet = pgxGraph.queryPgql(query)

print(pgxResultSet)

pgxResults = pgxResultSet.getResults()
for r in pgxResults.iterator():
 print(r.getString(1),':', r.getString(2),' - page rank =', r.getDouble(3))

Cleanup (free memory now)

In [19]:

pgxGraph.destroy()

Drop the graph in the database
Call a package method to drop the graph (and the related tables)
This is equivalent to

BEGIN
 OPG_APIS.DROP_PG('itoug');
END;

In [20]:

import cx_Oracle
con = cx_Oracle.connect('scott/Admin123@localhost:1521/ORCLPDB1')
cur = con.cursor()
cur.callproc('OPG_APIS.DROP_PG', ['itoug'])
cur.close()
con.close()

PgqlResultSetImpl[graph=itoug,numResults=10]
product : Mouse Pad - page rank = 7.002237185165857E-4
product : Keyboard Wrist Rest - page rank = 6.045444156492589E-4
product : O/S Documentation Set - English - page rank = 5.955638280537223
E-4
product : External 8X CD-ROM - page rank = 4.8124497979426615E-4
product : SIMM- 16MB PCMCIAII card - page rank = 4.6121060880009084E-4
product : CD-RW, High Speed Pack of 5 - page rank = 4.5177898111075276E-4
product : Model SM26273 Black Ink Cartridge - page rank = 4.4615106172522
936E-4
product : PCMCIA modem/fax 19200 baud - page rank = 3.75975313849342E-4
product : 1.44MB External 3.5" Diskette - page rank = 3.741326066667993E-
4
product : Standard Mouse - page rank = 3.7212800945481855E-4

In []:

Save and load graphs from files
A graph can be saved and loaded as a file (or various files) on disk (mainly useful when not storing in a
database). Various formats are supported including a binary specific one which provides the most feature
(nodes labels, various nodes IDs type etc.)
This notebook connect to a PGX server instance, but the same works on the standalone.

Requirements & Environment
This notebook make use of PGX embedded into the Oracle Database installation. The database is installed
with ORACLE_HOME = /opt/oracle/product/18c/dbhome_1 , PGX can be found in
$ORACLE_HOME/md/property_graph/pgx/ . The PGX server is configured to listen on port 7007 without

SSL and authentication is disabled.

This Notebook is using python 3.6, but the graph code works the same on python 2.7. *JPype1* is required
and can be installed using pip (this package is the one connecting python to the JVM where the PGX
commands will be executed). graphviz is used to display the graph and can be installed using pip , this
method will not work with huge graphs because the resulting image will be too big.

Import required packages

In [1]:

from jpype import *
import os

Setup JVM
Start JVM passing the PGX 2.7.0 classpath

In [2]:

%load -s _get_pgx_class_path ../graphUtils.py
def _get_pgx_class_path(pgx_directory):
 class_path_list = []
 for root, dirs, files in os.walk(pgx_directory):
 for file in files:
 if file.endswith('.jar'):
 class_path_list.append(os.path.join(root, file))
 return ':'.join(class_path_list)

In [3]:

pgxPath = '/opt/oracle/product/18c/dbhome_1/md/property_graph/lib/'
startJVM(getDefaultJVMPath(), "-ea", "-Djava.class.path="+_get_pgx_class_path(pgxPath))

Create a session
Need to start the PGX server before to continue:

/opt/oracle/product/18c/dbhome_1/md/property_graph/pgx/bin/start-server

In [4]:

session = JClass('oracle.pgx.api.Pgx').createSession("http://localhost:7007/", "my_sess
ion")

Create a new graph

In [5]:

new builder
builder = session.newGraphBuilder(JClass('oracle.pgx.common.types.IdType').LONG)

define some nodes (node ID is unique!)
builder.addVertex(1).addLabel("person").setProperty("name", "Francesco").setProperty("c
ountry", "Italy")
builder.addVertex(2).addLabel("person").setProperty("name", "Christian").setProperty("c
ountry", "Switzerland")
builder.addVertex(3).addLabel("session").setProperty("name", "Starting an Oracle Analyt
ics Cloud Journey from 0")
builder.addVertex(4).addLabel("event").setProperty("name", "ITOUG 2019")
builder.addVertex(5).addLabel("country").setProperty("name", "Italy")
builder.addVertex(6).addLabel("country").setProperty("name", "Switzerland")
builder.addVertex(7).addLabel("continent").setProperty("name", "Europe")

define some edges (edge ID is unique!)
builder.addEdge(0, 1, 2).setLabel("friendOf")
builder.addEdge(1, 1, 3).setLabel("presents")
builder.addEdge(2, 2, 3).setLabel("presents")
builder.addEdge(3, 3, 4).setLabel("scheduledAt")
builder.addEdge(4, 1, 5).setLabel("livesIn")
builder.addEdge(5, 2, 6).setLabel("livesIn")
builder.addEdge(6, 5, 7).setLabel("partOf")
builder.addEdge(7, 6, 7).setLabel("partOf")
builder.addEdge(8, 4, 5).setLabel("userGroupOf")

Build new graph

In [6]:

graph = builder.build()

print(graph)

Out[5]:

<jpype._jclass.oracle.pgx.api.graphbuilder.EdgeBuilderImpl at 0x7f72ec0a3d
d8>

PgxGraph[name=anonymous_graph_4,N=7,E=9,created=1549206372897]

Visualize the graph

In [7]:

%load -s renderGraph ../graphUtils.py
def renderGraph(graph):
 from graphviz import Digraph

 # get all the vertices of the graph
 vertices = graph.getVertices()
 # create a new visualization
 dot = Digraph(comment='Graph')
 # loop over vertices
 for v in vertices.iterator():
 dot.node(str(v.getId()), v.getProperty("name"))

 # loop over vertices to get 'out' edges
 for v in vertices.iterator():
 edges = v.getOutEdges()
 # loop over 'out' edges
 for e in edges:
 dot.edge(str(e.getSource().getId()), str(e.getDestination().getId()), label
=e.getLabel())

 # return (display) graph
 return dot

In [8]:

renderGraph(graph)

Out[8]:

Francesco

Christian

friendOf

Starting an Oracle Analytics Cloud Journey from 0

presents

Italy

livesIn

presents

Switzerland

livesIn

ITOUG 2019

scheduledAt

userGroupOf

Europe

partOf

partOf

Save file on disk

In [9]:

configFormat = JClass('oracle.pgx.config.Format')

storeIn = '/opt/jupyter/ITOUG_2019/sample_graph.pgb'
storeConfig = graph.store(configFormat.PGB, storeIn, True)
cfgStoreFile = open(storeIn+'.json', 'w')
cfgStoreFile.write(storeConfig.toString())
cfgStoreFile.close()

print(storeConfig)

Load graph from disk

In [10]:

myGraph = session.readGraphWithProperties('/opt/jupyter/ITOUG_2019/sample_graph.pgb.jso
n')

print(myGraph)

{"format":"pgb","vertex_id_type":"long","attributes":{},"loading":{"load_v
ertex_labels":true,"load_edge_label":true},"error_handling":{},"edge_prop
s":[],"vertex_uris":["/opt/jupyter/ITOUG_2019/sample_graph.pgb"],"vertex_p
rops":[{"name":"name","type":"string"},{"name":"country","type":"strin
g"}],"edge_uris":[]}

PgxGraph[name=sample_graph,N=7,E=9,created=1549206380395]

In [11]:

renderGraph(myGraph)

Out[11]:

Francesco

Christian

friendOf

Starting an Oracle Analytics Cloud Journey from 0

presents

Italy

livesIn

presents

Switzerland

livesIn

ITOUG 2019

scheduledAt

userGroupOf

Europe

partOf

partOf

In []:

Convert PGQL to SQL
There is a method to convert a PGQL to pure SQL which can be execute in the database directly without
loading the graph into PGX.

In [1]:

from jpype import *
import os

In [2]:

%load -s _get_pgx_class_path ../graphUtils.py
def _get_pgx_class_path(pgx_directory):
 class_path_list = []
 for root, dirs, files in os.walk(pgx_directory):
 for file in files:
 if file.endswith('.jar'):
 class_path_list.append(os.path.join(root, file))
 return ':'.join(class_path_list)

In [3]:

pgxPath = '/opt/oracle/product/18c/dbhome_1/md/property_graph/lib/'
startJVM(getDefaultJVMPath(), "-ea", "-Djava.class.path="+_get_pgx_class_path(pgxPath))

Convert PGQL to SQL
Based on the documentation (https://docs.oracle.com/en/database/oracle/oracle-database/18/spgdg/sql-
based-property-graph-query-analytics.html#GUID-7642327B-B973-4C48-90B1-1447F3D57CA5
(https://docs.oracle.com/en/database/oracle/oracle-database/18/spgdg/sql-based-property-graph-query-
analytics.html#GUID-7642327B-B973-4C48-90B1-1447F3D57CA5)) it's possible to translate PGQL into SQL
without executing it.

https://docs.oracle.com/en/database/oracle/oracle-database/18/spgdg/sql-based-property-graph-query-analytics.html#GUID-7642327B-B973-4C48-90B1-1447F3D57CA5

In [4]:

Define Java>Python classes
OracleClass = JClass('oracle.pg.rdbms.Oracle')
OraclePropertyGraphClass = JClass('oracle.pg.rdbms.OraclePropertyGraph')
OraclePgqlExecutionFactoryClass = JClass('oracle.pg.rdbms.OraclePgqlExecutionFactory')

Create a connection to Oracle
oracle = OracleClass('jdbc:oracle:thin:@localhost:1521/ORCLPDB1', 'scott', 'Admin123')
Select property graph
opg = OraclePropertyGraphClass.getInstance(oracle, 'itoug')

Execute query to get an OraclePgqlResultSet object
pgql = ("SELECT c.name, p.name, b.orderDate, b.amount, b.quantity "
 "WHERE (c WITH label = 'customer') -[b:buys]-> (p WITH label = 'product') LIMIT
10"
)

Create an OraclePgqlStatement
ops = OraclePgqlExecutionFactoryClass.createStatement(opg)
Get the SQL translation
sqlTrans = ops.translateQuery(pgql, "")

print(pgql)
print('--')
print(sqlTrans.getSqlTranslation())

Test SQL

In []:

%load_ext sql
%sql oracle://scott:Admin123@localhost:1521/?service_name=ORCLPDB1

SELECT c.name, p.name, b.orderDate, b.amount, b.quantity WHERE (c WITH lab
el = 'customer') -[b:buys]-> (p WITH label = 'product') LIMIT 10
--
SELECT * FROM(SELECT T4.T AS "c.name$T",
T4.V AS "c.name$V",
T4.VN AS "c.name$VN",
T4.VT AS "c.name$VT",
T1.T AS "p.name$T",
T1.V AS "p.name$V",
T1.VN AS "p.name$VN",
T1.VT AS "p.name$VT",
T3.T AS "b.orderDate$T",
T3.V AS "b.orderDate$V",
T3.VN AS "b.orderDate$VN",
T3.VT AS "b.orderDate$VT",
T0.T AS "b.amount$T",
T0.V AS "b.amount$V",
T0.VN AS "b.amount$VN",
T0.VT AS "b.amount$VT",
T2.T AS "b.quantity$T",
T2.V AS "b.quantity$V",
T2.VN AS "b.quantity$VN",
T2.VT AS "b.quantity$VT"
FROM "SCOTT".ITOUGGE$ T0,
"SCOTT".ITOUGVT$ T1,
"SCOTT".ITOUGGE$ T2,
"SCOTT".ITOUGGE$ T3,
"SCOTT".ITOUGVT$ T4
WHERE T0.K=n'amount' AND
T1.K=n'name' AND
T2.K=n'quantity' AND
T3.K=n'orderDate' AND
T4.K=n'name' AND
T0.DVID=T1.VID AND
T0.EID=T2.EID AND
T0.EID=T3.EID AND
T0.SVID=T4.VID AND
(T0.T = 1 AND T0.V = n'product') AND
(T0.T = 1 AND T0.V = n'customer') AND
(T0.EL = n'buys'))
WHERE ROWNUM <= 10

In []:

%%sql
SELECT * FROM(SELECT T4.T AS "c.name$T",
T4.V AS "c.name$V",
T4.VN AS "c.name$VN",
T4.VT AS "c.name$VT",
T1.T AS "p.name$T",
T1.V AS "p.name$V",
T1.VN AS "p.name$VN",
T1.VT AS "p.name$VT",
T3.T AS "b.orderDate$T",
T3.V AS "b.orderDate$V",
T3.VN AS "b.orderDate$VN",
T3.VT AS "b.orderDate$VT",
T0.T AS "b.amount$T",
T0.V AS "b.amount$V",
T0.VN AS "b.amount$VN",
T0.VT AS "b.amount$VT",
T2.T AS "b.quantity$T",
T2.V AS "b.quantity$V",
T2.VN AS "b.quantity$VN",
T2.VT AS "b.quantity$VT"
FROM "SCOTT".ITOUGGE$ T0,
"SCOTT".ITOUGVT$ T1,
"SCOTT".ITOUGGE$ T2,
"SCOTT".ITOUGGE$ T3,
"SCOTT".ITOUGVT$ T4
WHERE T0.K=n'amount' AND
T1.K=n'name' AND
T2.K=n'quantity' AND
T3.K=n'orderDate' AND
T4.K=n'name' AND
T0.DVID=T1.VID AND
T0.EID=T2.EID AND
T0.EID=T3.EID AND
T0.SVID=T4.VID AND
(T0.T = 1 AND T0.V = n'product') AND
(T0.T = 1 AND T0.V = n'customer') AND
(T0.EL = n'buys'))
WHERE ROWNUM <= 10

In []:

